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Abstract— We present a real-time SDF(Signed Distance Func-
tion) based 3D semantic mapping for LiDAR point cloud, which
achieves accurate and continuous surface reconstruction result
and high semantic segmentation accuracy. Real-time large-scale
scene understanding and 3D structure perception are very
challenging but important. LiDAR data is sparse and massive
and is difficult to use for 3D reconstruction. So we propose
a novel line-of-sight algorithm to update implicit surface in-
crementally and a novel semantic fusion method to segment
in real time. Besides, a new network named Frustum Fusion
Network(FFNet) is proposed to improve semantic segmentation
accuracy based on LiDAR point cloud and RGB images.
Our method takes advantage of the information in collection
processes to reduce noise in both reconstruction and semantic
segmentation. We implemented parallel computation in the
reconstruction and semantic fusion process, which achieve
a real-time performance. We demonstrate our approach in
CARLA dataset, Apollo dataset and our dataset. Compared
with the state-of-art mapping methods, our method has a great
advantage in terms of both quality and speed, which meets the
needs of robotic mapping and navigation.

I. INTRODUCTION

When robots enter unfamiliar environment, it is very
important to perceive the 3D structure and recognize objects
in real time. Reconstructing precise and continuous surface in
real time allows robots respond accurate and fast. At the same
time, fusing semantic information into the 3D map is also
a necessary part from the perception standpoint. Building
a system which can automatically perform real-time large-
scale semantic mapping is very meaningful.

For many robotic applications[1][2], they should always
be provided with the precise distance of relevant objects.
Among 3D sensing devices, LiDAR (Lighting Detection And
Ranging) holds a high measurement accuracy and higher
resolution of angles, distance and speed. However, recon-
struction based on LiDAR is almost off-line[3][4][5], because
LiDAR sensors collect ten thousands of points per frame and
it will collect a huge number of points just in several minutes.
So an efficient incremental reconstruction method is the key
to exploit the high accuracy of LiDAR and avoid the problem
of huge amount of data accumulation. On the other hand,
sparse online reconstruction[6][7][8][9][10] has always been
an important research field because of its many advantages
such as lower computation and equipment cost. But in some
applications such as self-driving, many objects of interest are
possible to be ignored and this situation will lead to serious
problem. Semantic information is also a vital aspect of
perception which can help robots understand surroundings.
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Fig. 1: The result of our system: 3D semantic map

Fusing it into the existing 3D map suffers a variety of
limitations. Many Approaches[11][12] just work indoors and
others[13][14] use a significant time in semantic fusion.
These methods achieve precise segmentation accuracy but
are not online.

In this paper, a novel real-time SDF(Signed Distance
Field) based 3D semantic mapping framework for LiDAR
point cloud is presented, which use a line-of-sight algorithm
to assign SDF value, FFNet to parse scene and Bayesian way
to fuse semantic 3D map with multiframe in data collection
processes. By fusing data over time, our method achieves
the 3D surface estimation with subvoxel precision and high
accuracy of semantic segmentation. Our line-of-sight algo-
rithm also can update the SDF value of voxel incrementally.
Parallel computation is implemented to achieve real-time
performance.

The paper makes main contributions as follows,
• We present a new real-time SDF based 3D semantic

mapping for LiDAR point cloud. Compared with other
methods, our framework can achieve smoother 3D sur-
face estimation with subvoxel accuracy, higher accuracy
of semantic segmentation and real time performance.

• We propose a novel line-of-sight algorithm to update
the implicit surface incrementally and reduce noise
considering LiDAR characteristics.

• We propose a joint 2D-3D segmentation network
(FFNet) for scene parsing, which exploit fusing the
spatial information and texture information to parse
scene.

• We incrementally fuse the 3D semantic map over time
using the results of FFNet as input and improve the
accuracy of semantic segmentation compared with using
single frame data.

The rest of this paper is organized as follows. Related work
is included in Sect. II. Sect.III presents our line-of-sight
algorithm, FFNet and semantic fusion module. Experimental
results and comparisons are shown in Sect. IV. Finally, a
discussion and a conclusion are made in Sect. V.



Fig. 2: Overview of our pipeline. (a) is multi-frame LiDAR point cloud and RGB images as input; (b) is FFNet which
outputs semantic results based on LiDAR point cloud and RGB images; (c) is the implicit surface update process; (d) is
semantic fusion module and 3D semantic mapping results.

Fig. 3: Implicit surface reconstruction. we use TSDF
weighted moving average computation. l1 and l2 are different
lines of sight. The first update l1 and the next update l2
combine to get an average surface point, which is close to
the real point.

II. RELATED WORK

3D semantic mapping and surface reconstruction, due to
their vast applications in many areas, have long been popular
in many research communities, from computer graphics,
computer vision to robotics.

A. 3D Reconstruction

In the computer graphics and computer vision fields, re-
searchers proposed many methods to achieve precise surface
reconstruction for LiDAR point cloud. Verma et al. [15],
Zhou et al. [16] and Poullis et al. [17] created 3D scenes
from LiDAR data. They used classification to remove noise,
segmentation to separate individual building patches and
ground points, and generated mesh models from building
patches. These approaches are not generalized well to handle
objects with arbitrary shapes since they rely on predefined
patterns. Without exception, these methods must be done
off-line. KinectFusion [18] uses TSDF (Truncated Signed
Distance Function) to model surface using RGBD data.
However, this method cannot deal with the LiDAR data.

In robotics field, Hornung et al. [19] proposed OctoMap
which uses octree data structure to realize memory-efficient.
However, OctoMap lacks detail near the surface and does

not have an arbitrary resolution. Lovi et al. [6] and Hoppe et
al. [7] realize real-time incremental reconstruction. However,
these sparse reconstruction methods can not provide a high
precision map, which is important for autonomous driving
application.

B. Semantic Mapping

Recently, semantic mapping has been more and more pop-
ular. Approaches like [11][12][20] reconstruct 3D semantic
model using RGB-D sensors which is easily affected by
the environment and limited by the effective distance of the
sensor. Sengupta et al. [13], Hane et al. [14] and Kundu
et al. [21] realize large-scale semantic mapping. But their
methods are off-line and are not incremental. Vineet et al.
[22] use stereo fusion to reconstruct semantic scene, which
is incremental and near real-time. They use random forest
classifier to extract 2D features and volumetric CRF to refine
results, which consume significant time in these processes.

III. METHOD

The pipeline of our system is shown in figure 2. The input
of our system is the LiDAR point cloud and RGB images.
Through registration algorithm, a pose can be estimated
and used to map and reconstruct. After obtaining the pose
information, voxels will be created only if they are near
the surface and within the volume range. Our line-of-sight
algorithm updates them incrementally. At the same time,
the FFnet will process the current frame data and output
the semantic segmentation results. At last, the semantic
fusion module will fuse the semantic results over time into
reconstructed 3D map and output 3D semantic map.

A. 3D Surface Reconstruction

Current methods[23][18] of integrating depth sensor data
into a TSDF are based on depth images. When it comes
to LiDAR, it will be different. What LiDAR collects is
unorganized point cloud data and we can not directly use
projection method to update its implicit surface. We propose
a voxel based line-of-sight update algorithm, as shown in
Fig. 3, to solve the problem. The line of sight is gotten



Fig. 4: Network achitecture of our FFNet.

from current sensor posture and LiDAR points P in world
coordinate. We get the voxels which the line of sight cross
through, update the associated voxel values, fuse them over
time and get the continuous implicit surface of an object.

The input to our algorithm is an unorganized 3D point
cloud set PL

k = {pL
k,1, pL

k,2, · · · , pL
k,n} in LiDAR coordinate

system {L}, k ∈ Z+, where k represents LiDAR frame
number, pL

k,i ∈ R3 indicates ith point in kth frame. LiDAR
kth frame’s pose in world coordinate system is Hk.

The key idea of our implicit surface update method is to
generate the line of sight ok pk,i, where ok is the sensor origin
and pL

k,i is the current LiDAR point, and then to find the
relevant voxels Vpk,i from the line of sight. We transform the
point cloud into world coordinate system using kth posture,
which contains a 3×3 rotation matrix Rk and 3×1 translation
vector Tk.

pk,i = [Rk Tk]pL
k,i (1)

ok is equal to Tk and the line of sight is a three dimensional
vector, as shown in equation 2.

−−−→ok pk,i = pk,i−ok,i (2)

We use the line of sight to sweep relevant voxels in space
and update their TSDF values and weights. To avoid missing
voxels when searching the surrounding voxels of each line
of sight. We find maximal axis and take the maximal axis
as standard and normalize other two directions to get the
normalized direction vector ˆ−−→opk,i, as shown in equation 3.

ˆ−−−→ok pk,i =
−−→opk,i

max(−−→opk,ix,
−−→opk,iy,

−−→opk,iz)
(3)

We then use the line normalized direction vector v̂ to find
related points Popk,i in the front of and behind the original
point Ok,i respectively, as shown in equation 4.

Popk,i = Ok,i +m · ˆ−−→opk,i (4)

where m is a parameter. In our system, m is set to integers
less than 5 in absolute value. Through these relevant points,
we get surrounding voxels Vk,i corresponding to the point
pk,i and vk,i ∈Vk,i.

LiDAR probably collects points from a long distance,
which contain more noise compared with close points. We
use a dynamic weight to account for noise data far from the
sensor. As shown in equation 5, a is a parameter which is
related to the size of reconstruction scene. According to our
experiment, we set the value of a to 5.

wvk,i =
a

a+ ||−−−→ok pk,i||
(5)

TSDF is updated as equation 6, 7.

Wk(vk,i) = max(Wk−1(vk,i)+wi(vk,i),Wmax) (6)

Dk(vk,i) =
Wk−1(vk,i)Dk−1(vk,i)+wk(vk,i)dk(vk,i)

Wk(vk,i)+wk(vk,i)
(7)

where Dk−1(vk,i), Wk−1(vk,i) are the TSDF values and their
weight of all voxels in k-1 frame as shown in equation 8.

Dk−1(vk,i) =
∑wk−1(vk,i)dk−1(vk,i)

∑dk−1(vk,i)

Wk−1(vk,i) = ∑wk−1(vk,i)

(8)

Voxel’s signed distance function is d1(vk,i), d2(vk,i), · · ·
dn(vk,i) with corresponding weight w1(vk,i), w2(vk,i), · · ·
wn(vk,i).

For parallelization, we use a spatial hashing based data
structure to manage the space, which allows us to insert and
update voxels in parallel. A memory pool is also created to
reduce fragmentation of memory and improve efficiency. We
only insert voxels near the zero isosurface and do not waste
memory on empty space.

B. FFNet

The overall framework of our Frustum Fusion Network is
illustrated in Fig. 4. Owing to that we use point cloud data for
reconstruction, we have segmentation tasks on both image
and point cloud. Naively getting prediction of point cloud
from segmented image via projection will leave geometry
information unused. Furthermore, CNN architecture often
downsample input a lot to reduce time consumption and yield
coarse prediction maps missing many small but important
details, which is not consistent with accurate geometry in-
formation in our reconstruction system. Instead, We proposed



a novel Frustum Fusion Network for joint segmentation of
image and point cloud. Our network is composed of three
parts: a light CNN network to extract feature map, a frustum
block encode unit to aggregate information of sparse points
in each frustum block, and a fusion unit to combine image
and geometry information to make a joint prediction.

Light CNN for image Due to the inefficiency of CNN to
restore high resolution prediction, we apply a light weight
CNN architecture to achieve high level semantic information.
As shown in Fig.4, three 3x3 Conv layers with stride 2 are
used to downsample the input image to 1/8 resolution, the
output is then feed into PSPNET50 without initial block to
get feature map and image score map SI

p.
Frustum block encode unit Point cloud data is often

divided into voxels in Euclidean space for easy processing.
However, this will yield many empty voxels and make it
hard to build connections between geometry information and
image feature especially high level feature. To address this
issue, we proposed a frustum block encode unit to aggregate
information of points in each frustum block according to
2D image grids. First, we project point cloud to camera
coordinate to get a sparse map and a mask matrix Mp, which
is a binary matrix indicating if there is a point corresponding
to pixel position p. We also augment each point with relative
offset and low level image feature. Applying traditional CNN
modules on this sparse map will bring a lot of noise, instead
we use several 1×1 Conv layers to process each pixel of the
projected map in parallel to get encoded local feature map
FL

p. Then We multiply FL
p with Mp followed by a Maxpool

layer to get global feature FG
p for each block, here the size

and stride of the Maxpool layer is equal.
Frustum fusion unit In this module, we fuse the informa-

tion obtained from image and point cloud to get a joint 2D
and 3D segmentation result. As shown in Fig. 4, The above
global frustum block feature is concatenated with image high
level feature and passed through a 1x1 Conv to get joint
global feature. The joint global feature is then upsampled
and concatenated with local feature map to get a score map
SP

p for point cloud. The final score map is calculate by:

SF
p = SI

p +Mp×SP
p (9)

Then we use a softmax loss with image ground truth to train
the network end to end. Prediction for point cloud is then
obtained via transform, which is the input to our incremental
fusion module described in the next section.

C. Incremental Semantic Label Fusion

Output from the FFNet does not exploit the time informa-
tion and would have segmentation error due to uncertainty of
sensors and environments. Fusing the semantic information
over time will reduce noise and increase accuracy of seg-
mentation. The semantic information is fused in a Bayesian
way[26][19]. We denote the class distribution of a voxel
vk,i as lvk,i (lvk,i = l1

vk,i
, l2

vk,i
· · · l j

vk,i · · ·, j represents jth class, vk,i

represents kth frame’s ith point). l j
vk,i has two states {yes,no}

and Zk = {Ik,Sk} represents kth frame’s observation, which

includes images Ik and relevant voxels’ distance Sk from
LiDAR sensor. We assume that semantic results become
less credible at a further distance and P(l j

vk,i |Zk) ∼ P(l j
vk,i).

Semantic information P(lvk,i |Z1:k) is updated as equation 10
within a valid distance.

P(lvk,i |Z1:k) =

[1+
1−P(lvk,i |Zk)

P(lvk,i |Zk)

1−P(lvk,i |Z1:k−1)

P(lvk,i |Z1:k−1)

P(lvk,i)

1−P(lvk,i)
]−1 (10)

where P(lvk,i) is a prior probability. The common assumption
of a uniform prior probability leads to P(lvk,i) = 0.5. With

L(lvk,i) = log[
P(lvk,i)

1−P(lvk,i)
], (11)

the final update method is

L(lvk,i |Z1:k)=max(min(L(lvk,i |Z1:k−1)+L(lvk,i |Zk), lmax), lmin).
(12)

IV. EXPERIMENTS AND COMPARISONS

A. Dataset

We verify the effectiveness of our method for both 3D
semantic segmentation and reconstruction in three datasets.

CARLA Dataset. We generate a virtual dataset with
CARLA[24] simulation platform, which is built for realism
in the rendering and physics simulation and allows for
flexible configuration of the agent’s sensor suite. In our
experiment, we set cameras with 1024×1024 resolution to
get RGB and semantic segmentation images. A virtual 64-
line 10HZ LiDAR sensor is also added to obtain point cloud.
With sensors attached to a auto-piloted car in the virtual
city, We simulate and collect sensor data with corresponding
poses at 10 fps. Totally 900 frames data is generated and
every 10th frame of the sequence is selected to yield a 90
frames test set.

Apollo Dataset. We also evaluate our approach on Apollo
Dataset[25], which is challenging for real-world large-scale
scenes mapping. We use the Record005 sequence data of
Road02 portion.

VLP-16 Dataset. The VLP-16 dataset is collected by
ourself. Our system’s operating frequency is 10HZ, which
includes a VLP-16 LiDAR, two cameras and a laptop.

B. 3D Reconstruction Results

1) Qualitative Results: We show some qualitative results
for our reconstruction approach and achieve a good result
on both virtual dataset and real datasets. As shown in Fig.
5, our approach not only get good results on large objects
such as road and buildings but also have the ability to
accurately recover small object such as street light, boxes
and so on.These results prove that the line-of-sight algorithm
is very effective on LiDAR point cloud.



Fig. 5: Surface reconstruction results. Each column corresponds to different datasets. (a)is from CARLA simulator [24]. (b)
is from Apollo data set[25]. (c) is VLP-16 dataset, which is collected from our system.

Fig. 6: Reconstruction error of our method.

Fig. 7: Qualitative comparison of reconstruction result be-
tween our methods and OctoMap[19] under different depth
threshold.

TABLE I: Comparison on CARLA dataset: FFNet-PF denote the results rendered
after our incremental probability fusion.

Method Build Fence Poles Roadl Roads Sidew Walls mIoU

ICNET[27] 97.56 52.26 76.05 82.67 99.26 98.61 96.60 86.14
FFNet 97.88 54.34 78.23 83.33 99.25 98.34 96.80 86.88
FFNet-PF 99.18 64.50 83.79 87.55 99.52 98.41 98.01 90.14

2) Performance Comparison: To evaluate the errors in-
troduced by line-of-sight algorithm, we reconstruct a scene
in CARLA simulator as shown in Fig. 6. The error of 3D
reconstruction mainly appears at the edge of small objects
such as railing and street lights. As the approach of Sengupta
et al. [13], we render depth images from our reconstructed
3D model. By comparing them with the ground truth, error
heat maps can be calculated. We think one pixel is accurate
if the error is less than a fixed threshold and we can get the
accuracy of an image. When the depth threshold is 0.2m and
0.1m, our approach achieves 94.87% and 86.91% accuracy
respectively in average.

We compared our approach with OctoMap[19]. OctoMap
uses a discrete cut-off probability and its precision is limited
by the minimum voxel size. Compared with OctoMap, one
advantage of our method is that we can reach the subvoxel
precision. We use the same accuracy evaluation method.
When the depth threshold is 0.2m and 0.1m, OctoMap
achieves 86.85% and 73.28% accuracy respectively in aver-
age. As shown in Fig. 7, our approach outperforms OctoMap
in all cases.

C. Semantic Mapping Results

We quantitatively evaluate the accuracy of our semantic
reconstruction result on our simulated CARLA dataset. Our
FFNet cost 35ms on average to infer each frame on simulated
dataset. The prediction result of our fusion system is rendered
from 3D semantic map. We use pixel-wise interaction over
reunion (IoU) as our metric. For a fair comparison, pixels not
included in rendered map are not calculated. We compared
our system with real-time 2D approach of Zhao et al.
[27]. The results are summarised in table I and visualized
comparisons is illustrated in Fig. 8. We first observe that
our joint segmentation network utilizing point cloud data
achieve a slight improvement on poles and fence class against



Fig. 8: Visual results on CARLA. Columns from left to right are RGB image, ground truth, ICNET[27] result, FFNet result
and FFNet with probability fusion result. We ignore points not included in rendered map.

Fig. 9: Time Consumption of different modules, including
rendering, FFNet, reconstruction and fusion. The total time
is about 65ms in average.

[27] owing to the advantage of geometry information. Our
approach of joint segmentation network with incremental
probability fusion get better performance upon all classes ex-
cept sidewalks and achieve a improvement of 4.0% over [27]
on mIoU. As we can see in Fig. 8, many blurred boundaries
are eliminated via our incremental semantic fusion approach
and the outlines of thin objects improve a lot. The reason
of the performance drop on sidewalks class is that there
are many objects on sidewalks, which will bring a long
time occlusion problem. The above results demonstrate the
effectiveness of our incremental semantic fusion system and
the ability to reconstruct a highly precise semantic map.

D. Real-Time Performance

Real-time performance means all of our software modules
should be completed before the next frame’s data coming.
In our system, LiDAR’s operating frequency is 10HZ and
we need to process data within 100 ms per frame. VLP-16
LiDAR collects about 20k points per frame. So we fix the

points number per frame to 20k In table II(a). According
to the experiment in table II(a), we set the voxel size to
0.1m for the balance between speed and quality. As shown in
table II(b), our system is robust when points number changes.
Setting the voxel size and points number to 0.1m and 20k, the
total time per frame is about 65ms in average. Time spending
on the semantic segmentation, reconstruction and rendering
is about 35ms, 20ms and 10ms in average, as shown in Fig.
9 . Finally, our system consume less than 0.1s per frame and
achieve real-time performance.

(a) Different Voxel Size

Voxel size/m time/ms

0.2 42
0.15 52
0.10 65
0.08 88
0.06 122
0.04 136
0.02 153

(b) Different Points Number

Points Number(per frame) time/ms

5k 37
10k 45
20k 65
40k 113
60k 152
80k 213

100k 265

TABLE II: Table II(a) 20k points per frame, Table II(b) Voxel size is 0.1m

V. CONCLUSION

In this paper, we propose a real-time SDF based 3D
semantic mapping framework for LiDAR point cloud. A
line-of-sight algorithm is used to solve the large noise
in the LiDAR data, reconstruct smooth surfaces. A joint
2D-3D segmentation network FFNet is proposed for scene
parsing and an incremental fusion method is used to improve
semantic segmentation result. Our method provides real-
time performance to meet robotics needs and achieves a
subvoxel precision surface reconstruction result. Compared
with other state-of-art mapping methods, our method has a
great advantage in terms of both quality and speed.
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